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Foreword

The work described herein was performed by the McDonnell Douglas Research

Laboratories under NASA Contract NAS2-6601. The NASA Technical Monitor

was N.S. Vojvodich, Research Scientist, Thermal Protection Branch, NASA Ames

Research Center. This report is divided into two volumes. The first volume

contains the main text describing the work performed and a discussion of the

results. The second volume, the appendices (NASA CR 114520), contains the

calibration data, the model temperature histories, and the model physical

measurements.
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1 Abstract

The work described in this report concerned the cyclical thermal evaluation of

selected space shuttle thermal protection system (TPS) metallic materials in a

hypervelocity oxidizing atmosphere that approximated an actual entry environ-

ment. A total of 325 sample test hours were conducted in the McDonnell Douglas
Research Laboratories (MDRL) Plasma Arc Tunnel (PAT) facility on 21 super-

alloy metallic samples at temperatures from 1800 to 2200 0 F (1256 to 1478 K)

without any failures. The 4 x 4 in. (10.2 x 10.2 cm) samples were fabricated

from five nickel base alloys and one cobalt base alloy. Eighteen of the samples

were cycled 100 times each and the other three samples 50 times each in a test

stream emanating from an 8 in. (20.3 cm) diam exit, Mach 4.6, conical nozzle.

The test cycle consisted of a 10 min heat pulse to a controlled temperature

followed by a 10 min cooldown period.

Measurements of sample temperature were obtained with both physical and

optical techniques. Each sample was instrumented on the backface with five

tack-welded thermocouples after errors of several hundred degrees were found

in early tests utilizing spring-loaded thermocouples. In addition, an optical

pyrometer and a scanning infrared imaging system were used to measure the

sample front face temperature distribution. Measurements of total normal

emittance using an emissometer were made on strips of the various materials

at typical steady-state test conditions. Measurements of weight and thickness

changes were made at periodic intervals for each sample. The TD-NiCrAl and

TD-NiAlY materials showed the least change in weight, thickness, and physical

appearance even though they were subjected to the highest temperature
environment.
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2 Introduction

A broad cross-section of materials including me- the PAT facility with the samples at a 60 deg
tallic radiators, surface insulators, ablators, and (1.05 rad) angle-of-attack1 . All tests were con-
carbon-carbon composites have been suggested ducted during this program with the samples
for the entry thermal protection system (TPS) normal to the test stream. This provided a uniform
of the proposed space shuttle vehicle. Several temperature distribution over a larger part of the
candidate metallic materials are being considered sample than was experienced during the earlier
for use on the space shuttle in regions where the tests'
reentry heating is moderate [maximum temper-
atures less than 2200 0 F (1478 K)]. Among these The nominal test conditions maintained on the
materials are the nickel base alloys which have samples during each 10 min test cycle included
been dispersed with thoria to improve their high one of three different temperature levels, 1800,
temperature properties. The purpose of this work 2000, or 22000 F (1256, 1367, or 1478 K), at an

impact pressure of approximately 6 Torr (800was to evaluate large samples [4 x 4 in. (10.2 x N/m 2 ). The samples reached the desired test
10.2 cm)] of the more promising metallic radiators temperature in less than 30 sec after insertion

y temperature in less than 30 sec after insertionby cyclical testing in a hypervelocity oxidizing into the test stream. The sample temperature
atmosphere that approximated an actual entry distribution was continuously measured using
environment. It was desired to obtain the maxi- several techniques throughout each test cycle. The
mum model size and still maintain a uniform test physical appearance of the sample along with
stream. Multiple holders designed for ease instream. Multiple holders designed for ease in weight and thickness changes were recorded atmodel change were used to maximize efficiency periodic cycle intervals.
and minimize test cost. No previous work of this
nature has been reported involving either samples Volume I of this report describes the PAT
this large or total test times as long as 1000 min. facility and other apparatus used in the perform-

ance of this program. Calibration tests, the sample
test stream of p the McDonnell Douglas Research test technique, and test results are discussed. Thetest stream of the McDonnell Douglas Research

Laboratories (MDRL) Plasma Arc Tunnel (PAT) predicted thermal performance, analyses of the

facility located in St. Louis, Missouri. The test optical and thermocouple temperature measure-

period extended from December 1971 to April ments, and emittance measurements are also

1972. Twenty-one metallic samples fabricated presented. Additional results such as calibration

from six different alloys were evaluated. Earlier data, sample physical changes, and measured

tests on similar materials had been performed in temperature distributions are presented in
Volume II.
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3 Apparatus

3.1 Plasma arc tunnel (PAT) facility 600 kW power supplies are used for operating the
arc heater. Each supply is a three-phase, full-wave

rectifier and has a saturable reactor current control.
The MDRL PAT facility (Fig. 1) consists of an Table 1 shows the range of arc heater operating
arc heater, model actuator, 6 ft (1.8 m) diam, parameters. In this type of arc heater, the largest
27 ft (8.2 m) long, water-cooled vacuum tank, percentage of electrode erosion occurs during arc
six-stage steam ejector system, power, water, and heater start-up and stabilization; therefore, the
air supplies, plus associated instrumentation. ability to operate the arc heater continuously for
Figure 2 shows the operating range used on this

long periods at constant conditions results in
program along with the PAT facility test stream sizeable reductions in total electrode erosion. For
capabilities for the splash-type test configuration, this program the total contamination caused by

The arc heater used in the PAT facility is a electrode erosion was only 0.02% by weight. The

Huls-type, dc powered arc heater with tandem, electrode material used for this program was a

water-cooled, cylindrical hollow electrodes. Two 20% Cu - 80% Ag alloy.

Several nozzles are available for use with the

PAT facility. The exit diameters range from 1.25

to 8.0 in. (3.17 - 20.3 cm). They are all conical

convergent-divergent nozzles and provide super-

sonic flow up to Mach 5.9. The nozzle used for
this program had an 8.0 in. (20.3 cm) diam exit

I . with a 1.00 in. (2.54 cm) diam throat, and pro-
vided Mach 4.6 flow at the nozzle exit.

The water-cooled model actuator system in the

PAT facility accommodates up to three test models
per facility run. The model actuator arms are
spaced 90 deg (1.57 rad) apart and can be indexed
into the test stream either clockwise or counter-
clockwise. The axial position of the entire system
can be varied 12 in. (30.5 cm) during a run. Each
model arm position is indicated electronically on
the data recording system to within 0.05 sec of

Fig. 1 Plasma arc tunnel (PAT) facility its locked, centerline position.
GP73-0587-1
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APPARATUS

1 dex = 1.25 in. \
* Centerline enthalpy assumed M = 3.5

1.3 x the energy balance enthalpy 30
* Flat face models dex = 1.25 in.

d = 2.4 in. M= 4.1 100O*dex =e2.48in

SM = 3.4

1000 --

M=4.6
E
cdex = 8 in.

- 102  M =5.9

dex = 5 in.
M=4.1

- Operating Range
for Contract

101
10-4 10-3 10-2 10-1 10 0  101

Model impact pressure (atm)

Fig. 2 PAT facility splash testing capability GP73-0587-2

Table 1 PAT facility arc heater operating range

Operating parameters at

Parameter Range of operation Maximum Maximum Maximum
bulk chamber power

enthalpy pressure input

Bulk enthalpy (Btu/Ib) 2000 - 29,000 29,000 2800 3400

Chamber pressure (atm) 0.09 - 56.5 0.18 56.5 35.8
Power input (MW) 0.065 -2.33 0.19 1.83 2.33
Air flow rate (Ib/sec) 0.0023 - 0.289 0.003 0.238 0.281
Arc current (A) 183- 2000 620 810 1040
Arc voltage (V) 106- 2260 305 2240 2240
Efficiency (%) 12- 71 49 41 45
Nozzle throat diam (in.) 0.250 - 1.000 0.984 0.250 0.375
Exit Mach number 1.0- 5.9 1.0 4.1 3.5

GP73-0587-43
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APPARATUS

3.2 Model holders Rmax = x tan (sin-1

The model holder shape and size were dictated by or (2)

the uniform heat flux requirement of the program (s in-1 )
and by the test stream size. The PAT facility pro- Rmax = Rex - 6 - x tan in .

vides a circular test stream issuing from an 8 in.

(20.3 cm) diam exit, 15 deg (0.26 rad) half-angle Models smaller than this are immersed in the

conical nozzle. The jet diameter at the nozzle undisturbed flow emerging from the nozzle and

exit is reduced by the calculated boundary layer normally yield uniform pressure and heating

displacement thickness according to Ref. 2: profiles.

The expected operating conditions for testing

S /PrVs - 0 .3 the metallic specimens were initially 1 atm (1.0133
-= (1) x 105 N/m 2 ) stagnation pressure and 2500 Btu/lb

(5.8 x 106 J/kg) enthalpy. Correcting for the

For a typical anticipated test condition of 1 atm boundary layer displacement thickness and

(1.0133 x 105 N/m 2 ) stagnation pressure and assuming frozen, one-dimensional inviscid core

2500 Btu/lb (5.8 x 106 J/kg) enthalpy with a flow, the exit Mach number for these conditions

0.55 in. (1.4 cm) diam throat, the calculated was calculated to be 5.18. During the calibration

boundary layer displacement thickness is 0.66 in. tests it was necessary to increase the nozzle throat

(1.7 cm). This agrees closely with visual obser- size to 1.00 in. (2.54 cm) to obtain the proper

vation and photographs of the jet. test conditions. This resulted in an exit Mach

The test stream continues to expand after number of 4.6.

leaving the conical nozzle until it is reflected by For the purpose of model design, the exit Mach

the jet boundary or turned by a shock wave. The cone was assumed to originate at the edge of the
location of the jet boundary is dictated primarily calculated and observed boundary layer. An axial

by the background pressure. The minimum back- position of 3 in. (7.6 cm) was assumed for the

ground pressure is determined by the vacuum model location. The calibration phase dictated

system pumping characteristics and the total air the final axial position selected [4 in. (10.2 cm)].
flow rate in the test stream. Normally the PAT

facility background pressure can be adjusted with

a bleed valve to properly expand the flow in the Rmax = 4.0 - 0.66 - 3 tan sin-1 1(
8 in. (20.3 cm) diam exit nozzle and maintain the 5.18

exit jet boundary diameter for several inches
= 2.75 in. (6.98 cm).

downstream.

Thus, the maximum diameter of 5.5 in. (14.0 cm)
Testing experience has shown that it is not

was chosen to allow testing the largest possible
prudent to exceed the local diameter of the exit

sample.
Mach cone when sizing a model. Models larger

than the Mach cone diameter experience non- In addition to the physical limitations, the

uniform flow conditions and undesirable edge following items were also considered in the model

effects resulting from bow shock-jet boundary holder design.

interactions. The maximum model radius at a 0 Ease of model changes,

given axial position is approximately: * Interchangeable parts,

Report MDC 00473 June 1972 MCDONNELL DOUGLAS 5
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APPARATUS

* Minimum instrumentation changes, Each model holder was equipped with two
* Use of existing model actuator and support 0. 125 in. (0.318 cm) diam calorimeters and two

arms, and 0.065 in. (0.165 cm) diam pressure taps located
* Close proximity of pressure transducers to at the edge of the sample pocket, 2.187 in. (5.55

the sensing point for best response. cm) from the center of the holder as shown in

Figure 3 depicts the model holder used in this Fig. 3. These sensors allowed independent con-

program. The main body was a 2 in. (5 cm) long, tinuous monitoring of the cold wall heating rate
5.5 in. (14 cm) diam, water-cooled copper cylinder and surface pressure during model tests.

with a 4.125 in. x 4.125 in. x 1.5 in. (10.5 x 10.5 Five tapped holes were provided in the holder
x 3.8 cm) pocket in the front surface. The pocket pocket base for retaining the spring-loaded
corners were chamfered 0.685 in. (1.74 cm) at a thermocouples that were initially used to monitor
45 deg (0.79 rad) angle to keep the entire sample the sample temperature. These holes were at the
within the uniformly heated region of the holder sample center and at the center of each quadrant.
surface.

Four removable metal plugs were provided for
A 4 in. x 4 in. (10.2 x 10.2 cm) sample (with mounting the back-up insulator thermocouples.

chamfered corners) was held in place by four Interchangeable plugs with attached thermo-
conical tipped screws, each at the midpoint of the couples allowed rapid changeover.
model sides (later eight were used; see Section 3.4). Each of the two model holders was bolted to
The midpoint location allowed thermal expansion

a combination sting and terminal housing thataway from the retainer pin. Each conical point positioned the sample in the test strea
positioned the sample in the test stream and

protruded from the model holder through a 0.125 provided a local terminal for all instrumentation.
in. (0.318 cm) diam hole into a 0.25 in. x 0.25 in.

The terminal housing and model holder sting(0.635 x 0.635 cm) tab on the model. The screw
(Fig. 3) evolved from the combined requirementstravel was slanted at the cone half-angle so the
to maintain the model holder rigid in the testbottom edge of the conical tip remained parallel
stream and to provide the simplicity of a localto the sample surface yet moved perpendicular to
instrumentation terminal. This apparatus wasthe surface for sample height adjustment. A

0.0625 in. (0. 159 cm) gap (initially filled with basically a copper box with a circular front plate
Fiberfrax) existed between the cold sample edge and an exit conduit. The front plate bolted

and model holder. Allowance for thermal expan- directly to the model holder and had a 2.5 x 3.0and model holder. Allowance for thermal expan-
sion was based on that of TD-NiCr at 2200 0 F in. (6.35 x 7.62 cm) opening for protruding
(1478 K) and it was assumed that all of the thermocouple components, wiring and pressure
metallic materials to be tested had comparable
thermal expansion coefficients. Each sample was The insulated instrumentation leads were
backed by a 1.5 in. (3.8 cm) thick Silfrax insulator. routed to one of the 44 spring-loaded terminal

receptacles in the housing. Wiring from the under-
A single inlet and outlet routed cooling water

side of the terminal receptacles was routed eitherto the model holder walls. The milled cooling down the axis of the water-cooled model actuatordown the axis of the water-cooled model actuatorpassage ensured high velocity cooling water arm or through a water-cooled conduit in back
adjacent to the front surface except at the chamfer of the arm. Pressure tubing was routed through
locations. The maximum holder temperature at
these corners was calculated to be less than 120 0 F
(322 K) with a cold wall heat flux of 25 Btu/ft2  on the model actuator hub.

sec (283 kW/m2).

6 ACNOMMELL DOUGLAS Report MDC 00473 * June 1972
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APPARATUS

Chamfered
sample pocket

, ' Pressure taps (2)

~ Calorimeters (2)

Thermocouple plug (4) Insulator thermocouples (12)

Sample

Tack welded thermocouples (5) Retaining screws (8)

Model holder
Calorimeter (2)

Water passage
View A - A

Back-up insulation 2

Scale - in.

Terminal board ( 00 Terminal housing

Spring loaded terminal (44)

Lid

Wiring conduit

Fig. 3 Model holder and terminal housing sting GP73-0587-3
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APPARATUS

The housing-sting was not directly water-cooled, sample holder. Each water-cooled plug contained
but, was in intimate contact with the water-cooled a Hy-Cal Model C-119 calorimeter and a 0.065 in.
model holder and actuator arm and was shielded (0. 165 cm) diam pressure tap. The calorimeters
from the test stream by the 5.5 in. (14 cm) diam were quoted by the manufacturer to have an
model holder. accuracy of +2% full range (0-80 Btu/ft 2 sec or

0-9.1 x 105 W/m 2 ). These sensors were chosen to
meet the original requirements of the contract
which called for testing several types of materials

3.3 Calibration module at conditions predicted to require heating rates
from 13 to 79 Btu/ft 2 sec (1.5 x 105 to 9.0 x

Figure 4 depicts the calibration module used to 105 W/m2. The sensors in the plugs that corre-

define the local stream characteristics of the sponded to the model quadrant centers were all

test sample. The 5.5 in. (14 cm) o.d. was identical on a 1.4 in. (3.6 cm) radius. The center plug
to the model holder. The main body was 0.75 in. located the calorimeter exactly on center and the

(1.9 cm) thick water-cooled copper. pressure tap slightly off center. The two outer
plugs oriented the calorimeters and pressure taps

Seven instrumentation plugs were located at on a 2.187 in. (5.55 cm) radius at locations
positions corresponding to the model backface corresponding to the sensors on the model holders.
thermocouples and to the calorimeters on the

Water cooled
copper body

Water in

Calorimeter - 0.187

Pressure 2.187 r 1.414 r

Water out
Calorimeters (7)

1.750 Pressure taps (7)

All dimensions in inches

Fig. 4 Calibration model GP73-0587-4

8 MCDONNELL DOUGLAS
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APPARATUS

A transient calibration module was also used All tubing and instrumentation wiring was

later in the program after encountering durability routed through a sting-terminal housing as was

problems with the Hy-Cal sensors. The outside done with the model holders. Each pressure tube

dimensions and heat flux sensor locations were was routed to a separate transducer.

identical to the steady-state calibration module. Rapid response by the pressure sensors was
Seven 0.125 in. (0.138 cm) diam, 0.125 in. (0.318 achieved by minimizing the volume between the
cm) thick copper slugs were used as sensors. Each sensing point and the sensing element. Minimum
sensor was insulated from the holder by a 0.125 volume was achieved in the sensing lines by
in. (0.318 cm) thick jacket of Sauereisen having a housing 11 pressure transducers directly on the

thermal conductivity of 2.84 Btu/hr/ftoF (0.492 model actuator hub. Twelve in. (30.5 cm) long,

W/mK). To provide this insulation gap around 0.065 in. (0.165 cm) i.d. tubing connected each

each heat flux sensor, the pressure ports were pressure tap and transducer. All components

moved on the same radii 0.062 in. (0.157 cm) rotated together during indexing of the model

from their positions on the steady-state, water- actuator.
cooled module.

Figure 5 depicts the transducer housing used.
An 8 in. (20.3 cm) diam copper canister 8 in.

Water cooled

tubing

- Transducer
holder plate

Conduit (3)

Wiring outlet
L conduit

S/Model
actuator hub

Arm conduits (3)

Model arms (3) 0 1 2 3 4

Terminal I I I I
Scale - inches

housing - sting (3)

Fig. 5 Pressure transducer housing GP73-0587-5
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APPARATUS

(20.3 cm) high was wrapped with water-cooled
copper tubing and fitted with a lid and bottom
plate. An annular ring retained the 11 transducers
near the inside wall. Transducer connections were
made as shown in Fig. 5 with the leads routed out
through a 2 in. (5 cm) diam water-cooled conduit.
Three water-cooled conduits protected the pressure
lines coming from the calibration module and the
two model holders. The bottom plate on the ---
canister opened into the existing model actuator
hub allowing instrumentation wiring to be routed
through the water-cooled model holder arms as
well as the auxiliary conduits.

3.4 Models -------- ---

Design emphasis was placed primarily on
meeting the requirements for testing metallics
since the majority of the tests were to be on this 4.000
type of material. Maximizing the sample size was
important in order to obtain tensile test bars from
the metallic samples following the thermal cycles.
Contact between the sample and the holder was
minimized to eliminate heat conduction losses
from the sides. The size limitations are discussed
in Section 3.2. 0.125

diam 003
The initial metallic sample design used is shown 4.000

in Fig. 6. The sample was 4 x 4 in. (10.2 x 10.2
cm) with 0.640 in. (1.63 cm) x 45 deg corner 0.093
chamfers to preserve heat flux uniformity. The
sample thickness (t) was of the order of 0.010
to 0.016 in. (0.025 to 0.041 cm). The four sides 2.000
were bent down at the edges to prevent gross
surface distortion during test. The bend radius w I-
(Rb) on the edge varied with the material from 0.640
5t to 10t. The side height (W) was approximately
0.10 in. (0.25 cm). Each side had a 0.25 in. Rb
(0.64 cm) wide, 0.25 in. (0.64 cm) long hold-down All dimensions in inches.
tab with a 0. 125 in. (0.318 cm) diam hole to accom-
modate the retaining screws. Fig. 6 Metallic sample

GP73-0587-6
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The first samples were made from 0.020 in. ment of pressures for primary and secondary air
(0.050 cm) and 0.010 in. (0.025 cm) thick TD- flow rates, chamber pressure, two water coolant
NiCr material acquired by MDRL and were used temperature differentials (AT's), two water coolant
during the preliminary runs to help establish the flow rates, arc voltage and arc current. These values
required arc heater operating conditions. These were then used to calculate the test stream bulk
samples also were used to check the MDRL de- enthalpy. The calibration module was used to
signed probe and spring-loaded thermocouples and measure heat flux and pressure in the resultant
the pyrometer automatic positioning system. Two characteristic test stream.
types of samples were fabricated, with and without A summary of the instruments used for these
a bend radius on the chamfered corners. It was measurements and probable system accuracies are
determined during these preliminary runs that the presented in Table 2. The full-scale measuring
bend radius was necessary on the chamfered capability of each instrument is also presented.
corners as well as the sample edges in order to
maintain a flat surface during testing. 3.5.2 Model

It was found in later tests that less sample dis- Measurement of the model temperatures was

tortion was experienced while testing the higher accomplished using three different techniques.

temperature [2200 0 F (1478 K)] samples than Surface temperature measurements were made

when testing the moderate [2000 0 F (1367 K)] using a Thermodot Model TD-9H infrared pyro-

temperature samples. It was, therefore, anticipated meter. This technique is described further in

that more difficulty might be experienced in Section 3.5.3. Another non-contact technique

maintaining a flat sample at 1800 0 F (1256 K). As utilized an AGA Thermovision Model 680 infrared

a result, the samples to be tested at this condition scanning camera (see Section 3.5.4). A third non-

were fabricated with eight hold-down tabs rather contact measurement technique utilizing a two-

than four. In addition to a tab at the midpoint of color pyrometer was attempted, but the instrument

each sample edge, a tab was placed at the midpoint exhibited erratic behavior. After several attempts
of each chamfered corner. This technique worked at shielding the sensor from extraneous radiation

well with no apparent adverse effects. failed, the use of this system was eliminated.

The only contact method of measuring the
temperatures of the metallic samples was by using
Pt-Pt 10% Rh thermocouples. The initial attempt

3.5 Instrumentation utilized Baldwin-Lima-Hamilton (BLH) spring-
loaded thermocouples as shown in Fig. 7. This
basic thermocouple design was later modified to

The PAT facility was fully instrumented to provide a larger movement in the thermocouple
provide permanent signal recordings as well as travel. However, this design modification was not
instantaneous visual readouts during the tests. adequate since the thermocouple sheath did not
All the data were continuously recorded by the have sufficient strength.
Research Data Acquisition System (RDAS) on A new spring-loaded thermocouple (Fig. 8) was
7 track, 556 bps (218.9 bpcm) IBM compatible

then designed by MDRL and fabricated from 10
magnetic tape at a recording rate of 10 channels/sec.

mil diam Pt-Pt 10% Rh standard grade thermo-
3.5.1 Facility couple wire. A thermocouple welder was used to

The instrumentation required to define the arc provide a small bead at the junction of each

heater operating conditions involved the measure- thermocouple. The wires from the bead were

Report MDC 00473 * June 1972 MCDONNELL DOUGLAS 11
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Table 2 Instrumentation

Parameter Instrument Recorder Range System accuracy

Arc heater
Arc pressure Statham type RDAS* 0-50 psia 0.50%

PA220TC-50-350

Arc voltage MDC voltage divider RDAS 0-2000 V t 0.35%

Arc current GE Model JDC-1 RDAS 0-1000 A +0.75%
current transformer

Primary air flow MDC sonic flowmeter RDAS 10 - 3 - 10-1 lb/sec + 1%

Secondary air flow MDC sonic flowmeter RDAS 10 - 3 - 10-1 lb/sec 1%

Arc heater AT Delta T's RDAS 0-1000 F +0.3%

Water flow rates Turbine meters RDAS 0-70 gpm +0.55%

Metal I lics

Backface temperature BLH No. SLPR10-WS-125 RDAS 0-30000 F +0.55%
thermocouple

Pt-Pt/10% Rh tack-welded RDAS 0-30000 F ±0.55%
thermocouple

Surface temperature Thermodot Model TD-9H RDAS 1840-2720 0 F +3% of range span
pyrometer

AGA thermovision model Polaroid 0-36000 F +0.36 0 F max resolution
680 camera

Surface emissivity MDC emissometer - 0-1 ±4%

Insulation temperature Pt-Pt/10% Rh thermo- RDAS 0-3000oF ±0.55%
couples

Heat flux Hy-Cal model C-119 RDAS 0-80 Btu/ft 2 sec +2%

calorimeter

Impact pressure CEC type 4-353-0001 RDAS 0-0.5 psia + 0.35%

Weight Voland 220 analytical Hand 0-220 g + 0.001 g
balance

Size Starrett micrometer Hand 0.001-3.0 in. 0.0001 in.

Calibration model

Heat flux (7) Hy-Cal model C-119 RDAS 0-80 Btu/ft 2 sec 2%
calorimeter

MDC transient calorimeter Oscillograph -

Impact pressure (7) CEC type 4-353-0001 RDAS 0-0.5 psia + 0.35%

*Research data acquisition system

G P73-0587-44
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APPARATUS

Pt-Pt 10% Rh routed through small double bore aluminum oxide
thermocouple Pt-Rh tubing. A ring was bonded with ceramic cement

0.014 sheath near one end of the aluminum oxide tubing to

diam provide a support for the spring. The spring holder-
No. 5-44 thd.- r Welded

junction thermocouple support was threaded externally to
Spring fit a threaded hole in the model holder body.

Adjustment of this threaded support combined
0.062
diam with varying the length of the spring provided a

spring-loaded axial movement of approximately
0.25 Pt ---- 0.25 in. (0.64 cm) for each thermocouple.
diam Pt-Rh ---- This spring-loaded thermocouple design still

Sproduced significant temperature discrepancies
0.75 - 1.25 , when compared with the pyrometer measurements.

All dimensions in inches. The decision was then made to establish a test
set-up in which the temperatures measured by the

Fig. 7 Spring-loaded thermocouple for sample various spring-loaded thermocouple designs could
backface be compared with tack-welded thermocouple

GP73-0587-7 measurements. The results of these tests (Section
6.1 ) prompted the decision to test all remaining
samples using tack-welded thermocouples at five
locations on the metallic samples. These locations

Sample were on the center of the model and the center of

Pt-Pt 10% Rh thermocouple bead each of the four model quadrants.

Silfrax It was originally planned to use BLH miniature
probe thermocouples to measure the back-up
insulation temperatures. However, these 0.014 in.
(0.036 cm) diam probes were found to be too
fragile for this application. As a result, a probe
thermocouple was designed and fabricated by
MDRL using 0.010 in. (0.025 cm) diam Pt-Pt 10%
Rh thermocouple wire routed through 0.063 in.

Sample (0. 160 cm) diam double bore aluminum oxide
holder tubing. This design had the required strength and
housing thus was used for the test program.

After it had been initially determined that the
in-depth position was critical to achieve good

Aluminum oxide temperature agreement, the back-up insulation
thermocouples were precisely positioned using a

0 1 special test fixture. The in-depth thermocouples
J I [ I I were all located on a radius of 1.414 in. (3.592

Scale - inches cm) at three depths of 0.375, 0.750, and 1.125 in.

Fig. 8 MDRL spring-loaded thermocouple (0.952, 1.905, and 2.858 cm). The 12 in-depth
GP73-0587-8 thermocouples and 4 of the surface thermocouples
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APPARATUS

were equally spaced on the 1.414 in. (3.592 cm)
radius (Fig. 3). Thermodot pyrometer

3.5.3 Pyrometer Quartz viewing ports (2)

A Thermodot Model TD-9H automatic optical Plexiglass
viewing

pyrometer designed to measure temperatures n
port

between 1840 and 8300 0 F (1278 and 4867 K)
using three ranges was used to radiometrically
measure the sample surface temperature. It had
a 1.5 in. (3.8 cm) diam f/6 lens. The detector was Vacuum tank

a silicon pn junction photovoltaic sensor sampling Note:
monochromatically at 0.8 Mm. 21.20- Thermovision camera has

Vacuum ansame viewing angle from
The pyrometer was calibrated by the McDonnell dished end opposite side of tank

Aircraft Company (MCAIR) Bureau of Standards plate
using a Pyrometer Instrument Company 95M4376 0 12
optical pyrometer as a standard. The calibration Scale - inches

accuracy was +3% of range span [1840 - 2720 0 F Extension
(1278 -1767 K)]. canister

The pyrometer viewed the sample through a Nozzle Flow Sample
General Electric 125 fused quartz window 0.5 in. Flow Holder
(1.27 cm) thick. The sighting angle was 21.2 deg
(0.37 rad). Cold air was uniformly injected around
the viewing port inside the vacuum tank to prevent
particle contamination of the window. The pyro- GP73-0587-9
meter lens was 3 in. (7.6 cm) from the window and
50 in. (1.3 m) from the test sample. dimensional positioning device was a Gilman

Model L6-12-4/L6-12-4 lead compound, which
Pyrometer sightings were sequenced automati- had a 4 x 4 in. (10 x 10 cm) travel and an accuracy

cally by the two-dimensional slide positioning of +0.001 in. (+0.0025 cm); the compounds were
system. The pyrometer automatic positioning sys- driven by small 28 V motors. A precision Helipot
tem provided two pyrometer scans of five points Model 7603 potentiometer tracked the position
each (coinciding with sample backface thermo- of each compound slide and gave a continuous
couple locations) on the model surface during position output. It also was an integral part of the
each 600 sec test cycle. A sixth position was used position feedback for sequential sampling of five
as a reference to check system sample to sample locations on the model.
repeatability. One of the pressure ports on the 3.5.4 IR scanning equipmentmodel holder was used as this reference position.
Outputs from potentiometers on the positioning An AGA Model 680 Thermovision System was
system drive motors were recorded on the data positioned in a location similar to that of the
system so a temperature-time-position correlation pyrometer but on the opposite side of the vacuum
could be made. tank. This unit continuously viewed each sample

through a CaF 2 window (initially fused quartz) toFigures 9 and 10 illustrate the pyrometer determine the model surface temperature
arrangement used on this program. The basic two-

distribution.
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Thermodot TD9

. rtz viewing rmMeter
ourtz

Fig. 10 Pyrometer positioning system

The systems consists of a camera unit containing Each of the two scanning prisms is furnished
the liquid nitrogen cooled infrared detector, with a positional pick-off ring having small
optical/mechanical scanner, video signal amplifiers, triggering strips of magnetic material placed edge-
and the CRT display to view the thermogram. on in relation to the position of each prism flat.

The IR scanner in the camera unit consists of As the prisms rotate, the triggering strips pass in
front of the magnetic pick-up heads, producingtwo rotating (vertical and horizontal) scanning
electrical synchronization pulses. These pulses are

prisms, two prism-drive motors, magnetic position-
sensing heads, and a collimating lens. A virtual used in the display unit for triggering the hori-
image is formed by the front lens of the camera on zontal and vertical display sweeps to reproduce

a plane within the first prism. The image is scanned the camera scanning pattern on the CRT.

vertically by rotation of the prism about its hori- The radiant flux from the scanner impinging
zontal axis. This results in a horizontal, virtual on the detector generates an electrical voltage
line-image being formed within the second scanning signal across the terminals of the detector. The
prism. The line-image is then scanned horizontally amplitude of the signal varies according to the
in turn by rotation of the second prism about its point-by-point temperature variations along the
vertical axis. surface of the object as it is being scanned by the

Report MDC 00473 *June 1972 MCDONNELL DOUGLAS 15
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camera. The signal derived from the camera unit white. The isotherms thus produced can be used

is amplified and used to modulate the intensity to measure the exact amount of temperature

of the CRT electron beam in the display unit. variation existing between details on the thermal

The electron beam sweeps across the screen of image of an object.

the monitor tube in synchronism with the camera 3.5.5 Emissometer
scanning-optics, under control of the trigger

pulses derived from the camera unit. This pro- Total normal emittance measurements were made

duces on the display screen a thermal distribution on representative metallic strip samples using a

of the object being scanned by the camera unit. MDC-developed high temperature emissometer.

An optical diagram is shown in Fig. 11. There
A selected amount of the infrared radiation

are three sources of input radiation to the thermo-
focused on the detector in the camera unit can be pile detector: radiation from an induction-heated

marked electronically to produce isothermal con- inconel blackbody for calibrating the emissometer

tours on the display screen. Whenever the detector (effective emittance> 0.995); radiation from a

video signal level corresponds to the arbitrary strip of oxidized DS-NiCr used to monitor con-
isothermal level selected by the operator, the tamination of the potassium bromide infrared
electron beam of the CRT is automatically window mounted on the vacuum chamber; and

switched to maximum intensity. This causes all radiation from the sample of unknown emittance.
areas in the thermal picture having the selected

temperature level to be delineated in saturated Each radiation source can be focused on the
detector by the plane rotating mirror. The radiation

o o
o 0 Induction-heated
O o inconel blackbodyo 0

Off-axis Chopper
parabolic mirror - - System limiting aperture

Rotating mirror

Micro Off-axis Potassium

optical parabolic mirror A bromide
pyrometer I window

Reeder vacuum
thermopile DS-NiCr ref. strip - - - 1 Strip sample
detector

Strip sample Vacuum

attachment chamber chamber

L--------

Fig. 11 High temperature emissometer with strip
sample attachment GP73-0587-11
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is modulated at 13 Hz by a motor-driven chopper similar measurements to determine the extent of

and transferred onto a beamsplitter by the two any window contamination. Finally the mirror is

off-axis parabolic mirrors. The fraction of the rotated to view the sample which is resistance

radiation reflected by the beamsplitter is directed heated in a 10 Torr environment to the required

onto the thermopile detector (Reeder RP-5W). test temperatures (Fig. 12). The total normal

The transmitted part is viewed by the operator emittance is calculated from Eq. (1):

using the pyrometer. In this way precise alignment Vs - Vbgnd
of the complete optical system can be obtained Ctn
during a measurement. Vbb - Vbgnd

The 13 Hz voltage from the thermopile is where Vs  = detector output from the sample
measured with a tunable microvoltmeter. Chromel- Vbb detector output from the inconel
alumel thermocouples and a Leeds and Northrup blackbody and
8686 millivolt potentiometer provide the required
measurements of strip and blackbody temperatures. Vbgnd = system background level.

The metallic strips were heated with 6 Vac power.
The background level, Vbgnd, is measured by

At the start of a run, the emissometer is cali- inserting a mirror into the optical path immedi-

brated using the blackbody by recording the ately in front of the KBr window of the sample

voltage from the thermopile detector at several chamber and noting the detector output.

temperatures. The mirror is then rotated to the
Repeated measurements on a variety of samples

DS-NiCr strip (emittance = 0.72) which is resist- indicate that the error in the absolute total normal
ance heated to 1800 0 F. The thermopile output emittance measurements was +0.03.
is recorded for comparison with subsequent

Fig. 12 Emissometer strip sample attachment chamber (housing removed)
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4 Test procedure

All models were splash tested (surface perpen- with acetone, and weighed to +0.0005 g on an
dicular to the stream centerline) in the MDRL analytical balance. Pre-test thickness measurements
PAT facility with the models on the stream were recorded at nine positions (Fig. 13) on the
centerline at an axial position 4 in. (10.2 cm) model surface. Color 35 mm photographs were
downstream of the nozzle exit plane. taken of the front and back surfaces of each model

Three model actuator arms mounted 90 deg with the notched edge at the top of the photograph.

(1.57 rad) apart were used to support the two The models were then installed in the holders,
models and a calibration module in the vacuum and modifications to the back-up insulation
test chamber. Models were mounted on arm nos. (Silfrax) were made as required so that the model
2 and 3 with the calibration module on arm no. 1. front surface would be coplanar with the holder.
Model surface and back-up insulation temperatures
and distributions were taken continuously during
each model test.

8
7e 1

4.1 Model preparation

All materials tested in this program were superalloy
metallics supplied by the NASA Lewis Research 6 9 2
Center Materials and Structures Division. The
material was shipped to the MDRL where the test
models were fabricated.

The first NASA samples were fabricated from 5 3

DS-NiCr and identified as DS-3 and DS-4. Identi- 4
fication was achieved by notching one edge radius
on each sample perpendicular to the material's
rolling direction. The samples were installed with 0 1 2

the rolling direction in the horizontal plane, and Scale - inches
the notched edge at the top.

Fig. 13 Thickness measurement locations
Before installing the models in their holders,

the fabricated models were cleaned thoroughly GP73-0587-13
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TEST PROCEDURE

Narrow strips of Fiberfrax insulation were then that were varied during these runs included the

loosely packed around the model edges to fill arc current, primary gas flow rate, secondary gas

the expansion gap between the model and holder flow rate, nozzle throat size, and model axial

edge. As the models expanded during heating position. Heat flux and pressure distributions were

this gap was virtually eliminated. measured for each operating condition using the

water-cooled calibration module. Initially, the
The practice of filling this gap with Fiberfrax gold-plated calorimeter sensors were cleaned with

was discontinued during the early cycles on TD-5 dilute nitric acid prior to each run, while the

and TD-9 with no detrimental effect, and all sub- copper calibration module front face was cleaned
copper calibration module front face was cleaned

sequent tests were conducted without it. In fact, with dilute acetic acid. However, comparison of

the elimination of this insulation appeared to 'heat flux measurements made with both cleaned

improve the model temperature distribution and uncleaned sensors for the same test conditions

because of reduced material distortion. Since the showed no appreciable difference. The frequent

Silfrax back-up insulation filled the entire sample cleaning procedure therefore was abandoned as it

holder cavity with the exception of the shallow appeared that the delicate sensor surfaces were

gap around the perimeter of the sample, there was being damaged. In fact, after approximately 400

no flow around the sample backface. min of arc jet exposure and 25-30 cleanings it was

After initial tests were conducted and it was necessary to replace two of the sensors on the

concluded that spring-loaded thermocouples con- calibration module.

sistently measured lower than true temperatures, The final facility configuration, which provided
the use of tack-welded thermocouples was initi- all three test conditions by simply varying the arc
ated with cycle 41 on model DS-3 and cycle 42 on current and air flow rates, included the following:
model DS-4. To facilitate attachment of these a 1.0 in. (2.54 cm) diam nozzle throat which

thermocouples, the model back surface was lightly yielded a Mach 4.6 test stream at the 8 in. (20.3

sanded in the region of attachment and cleaned cm) diam exit of the 15 deg (0.26 rad) half-angle
with acetone as were the thermocouple wires. An conical nozzle; 80% silver - 20% copper electrodes;

additional wire was attached to the center of the and a model axial position of 4 in. (10.2 cm) from

sample and used as a ground wire to minimize the nozzle exit plane.
instrumentation noise.

To assure test environment uniformity and
On all subsequent models a weight was obtained repeatability, the calibration module was inserted

following surface sanding and cleaning, and an into the test stream several times while making

additional weight was obtained after thermocouple the required number of thermal cycles on each

attachment to the cleaned surface, set of samples. The Hy-Cal heat flux sensors did

not have the durability expected. After completing

only 15% of the test program, a total of five

sensors on the calibration module had been re-
placed. As a result, it was decided to modify the

calibration module to replace the Hy-Cal sensors

Prior to conducting the material evaluation tests, with transient slug calorimeters (see Section 3.3).

several PAT facility runs were made to establish
Measurements with the new calibration module

the arc heater configuration and operating con-
ditions necessary to produce a uniform heating utilizing transient calorimeters indicated that the

heat flux values were 3-4 Btu/ft2 sec (3.4-4.5 x 104

distribution at sample temperatures of 1800, 2000 W/m 2 ) higher than the Hy-Cal measured values at

and 2200 0 F (1256, 1367 and 1478 K). Parameters
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the same arc heater operating condition. However, Heat Flux
the +2% full range accuracy (Section 3.3) quoted (Transient)
by the manufacturer, Hy-Cal Engineering, could 1. value 17.3 Btu/ft 2sec
account for much of this discrepancy. 1.1.4 -

A thin coating of dupont Teflon-S was applied c 1.2 O O
to the transient heat flux sensors prior to one run 2 1.0 9
to provide non-catalytic surfaces. Comparison of ' 0.8
the data from this run with data obtained at 0.6
similar conditions with uncoated sensors showed 0.4
a ratio of approximately 0.8. Pressure

1.6
The heat flux and pressure calibration data 1.

2 1.4 -
obtained while testing each set of samples are .2

> 1.2-
shown in Figs. A-1 through A-11 in Appendix A,
Volume II, of this report. Typical data for two 10 O O 0 O

. 0.8different test conditions are shown in Figs. 14 and .2 0.8M 0 ( value = 5.2 Torr
15 of this volume. Each data point shown is an -0.6
average of several runs. The measured profiles 0.4 2 10 03.0 2.0 1.0 0 1.0 2.0 3.0
show a test stream uniformity generally within Radial distance (in.)

10% for the heat flux and +5% for the pressure. GP73-0587-14

Fig. 14 Heat flux and pressure calibration for
samples HS-1 and HS-2 tested at 18000 F

4.3 Testing Heat flux
(Transient)

1.4

The test procedure was as follows: 1.2 O
- 1.0 Q

1. The arc heater was started and stabilized at
& 0.8 -

the required test stream condition with no 2 0.6
model in the stream. .2+ 0.4 -

a value = 26.8 Btu/ft2sec
2. The calibration module on arm no. 1 was 0.2 - value

inserted into the stream, and fine adjust- 0 I I 1
ments were made in the arc heater controls Pressure
to achieve the desired heating rate and im- 1.2
pact pressure. Beginning with TY-1 and 1.0 -
TY-2 model tests, transient sensors were > 0.8 -

used to measure the test stream conditions 2 0.6 -
and no adjustments were made on the arc . 0.4 -

_ value = 6.1 Torrheater controls while the calibration module C- 0.2 -value
was in the test stream. 0 I L I i

3.0 2.0 1.0 0 1.0 2.0 3.0
3. As the calibration module left the test Radial distance (in.)

GP73-0587-15

stream, arm no. 2 entered.
Fig. 15 Heat flux and pressure calibration for

samples TD-7 and TD-8 tested at 22000 F
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4. The model on arm no. 2 was tested for the 11. Prior to facility shutdown, the calibration

prescribed number of 10 min heating cycles module was indexed into the test stream to

with continuous monitoring of the backface check the heat flux and pressure distributions.

temperatures (5), the Silfrax insulation 12. The models were reinstalled after the
temperatures (12), the model holder heating measurements were made and thermocouple
rate (2), the model holder pressure (2), and repairs (if needed) were completed. Testing
the arc heater operating parameters (9). was resumed as outlined in steps 1 through 1 1.

5. The surface temperature of each model was
13. When the required number of test cycles

measured with a TD-9H pyrometer at five had been completed and final post-test

pre-selected points which corresponded to measurements were made, the models were
the five backface thermocouple attachment securely suspended in a small metal box

positions on the model. Two scans of the (2 per box) and shipped air express to NASA

positions were completed during each 10 Lewis Research Center.
min test cycle.

6. The surface temperature distribution was

determined using an AGA Model 680

Thermovision, at a frequency of one com- 4.4 Post-test measurements

plete thermogram per cycle. Black and white

Polaroid thermograms were taken on all
tests through cycle 33 on models HS-1 and After each model was removed from the holder, a

HS-2. Each thermogram contained five to total weight was taken and recorded with respect
to the number of cycles completed. For those

eight isotherms. Data interpretation became to the number of cycles completed those

more difficult on the models tested at the models instrumented with tack-welded thermo-

lowest temperature, and a camera was couples, this total weight included the thermo-

obtained for taking 35 mm color thermo- couple and ground wire weights. If any wires were

grams. These were easier to interpret and broken during removal or if any had detached

thus were used on all subsequent tests. during testing, they were also weighed with the

model. All personnel assisting in model removal

7. After completion of the prescribed test time, wore white nylon gloves to minimize contami-

arm no. 2 was indexed out and arm no. 3 nation of the sample surface. Special care was

was indexed into the test stream. taken during handling of the models to prevent

8. Steps 4, 5, and 6 were repeated for this damage. The models were then photographed on

model. the front and back surfaces with a 35 mm color

camera.
9. Arm nos. 2 and 3 were alternated for the

prescribed number of cycles before physical Thickness measurements at the nine locations

measurements were made on the models. shown in Fig. 13 were made using a standard
micrometer with an accuracy of +0.0001 in.

10. All models tested for 100 cycles were re- (2.54 x 10- 4 cm). If any thermocouples required

moved and photographed f and and back: rewelding, a small area was sanded lightly and

weight and thickness measurements were cleaned with acetone prior to tack-welding the

recorded after 25, 50, 75, and 100 cycles, thermocouple at its original attachment point.

Models tested for 50 cycles were removed Before rewelding the thermocouple wires, another

for measurements after 15, 30, and 50 cycles. total weight was taken with any loose wires
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included, so the weight loss that occurred during fully reinstalled in the holders to prevent damage
surface preparation could be determined. After to the model, but some unaccountable weight
reattachment of any loose wires, the total weight losses may have occurred.
was again measured. The models were then care-
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5 Model tests

A total of 325 test hours were conducted on 21 are nominal since some adjustment of the arc
metallic samples fabricated from six different heater current and flow rates was required during
superalloy materials. A typical model during test the runs to maintain the sample temperature at
is shown in Fig. 16. The sample test order, material the desired level.
identification, control temperature, arc heater The entire test program was conducted without
nominal operating conditions, and test stream

any arc heater electrode failures. The average
conditions are given in Table 3. The enthalpy electrode lifetime was approximately 75 operating
values shown are average exit values based on an hours for the cathode and 120 hours for the anode.
arc heater energy balance. It should be noted that

Test stream contamination caused by electrode
all arc heater parameter values listed in Table 3

material loss was less than 0.02% by weight.

Fig. 16 Typical model during test
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Table 3 Test program summary

Test Test E I 1i1  m2 Efficiency hex PT P T 4 Sensor av

No. Sample Material temrature (V) (A) (Ib/sec) (Ib/sec) (%) (Btu/lb) (Torr) (Torr) (Btu/ft 2 sec) used (Btu/ft2sec)

1. DS-3, DS-4 DS-NiCr 2000 410 640 0.015 0.010 41 4100 6.9 6.8 23.9 21.3

(Cycles
1-40)

410 1580 0.015 0.010 42 3800 6.9 6.8 18.7 17.4

') (Cycles Hy-Cal

41-100)

2. TD-5, TD-9 TD-NiCr 2000 390 630 0.015 0.010 39 3600 7.0 6.8 18.8 18.4

3. TAL-1, TAL-2 TD-NiCrAI 2200 380 530 0.012 0.007 40 4000 6.0 5.7 18.7 17.7

4. TY-1, TY-2 TD-NiCrAIY 2200 380 520 0.012 0.007 40 3900 5.9 5.7 19.4 21.4

5. HS-1, HS-2 HS-188 1800 380 435 0.011 0.007 45 3900 5.2 5.0 17.3 18.8

6. X-1, X-2 Hastelloy X 1800 380 390 0.012 0.007 47 3500 5.4 5.2 16.4 18.4

7. TD-1, TD-2 TD-NiCr 1800 390 435 0.013 0.009 43 3200 5.3 5.1 16.9 18.4
Transient

8. DS-i, DS-2 DS-NiCr 2000 400 530 0.015 0.009 41 3400 6.4 6.2 23.6 23.7

9. TD-7, TD-8 TO-NiCr 2200 400 500 0.014 0.007 37 3300 6.1 5.9 26.8 28.4

10. OS-5, DS-6 DS-NiCr 2000 400 550 0.015 0.009 35 3100 6.3 6.0 25.1 23.6

11. HS-3 HS-188 2000 410 510 0.015 0.008 35 3000 6.3 6.1 25.2 23.6

Note: All samples were tested for 100 10-min cycles except samples TD-7, TD-8, and HS-3 which were tested for only 50 cycles each.

Weight and thickness measurements were made after 25, 50, 75 and 100 cycles for those samples tested for 100 cycles and after 15, 30, and 50 cycles for those

O samples tested for 50 cycles.
GP73-0587-45
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6 Results

6.1 Physical contact temperature
measurements

TD-NiCr sample
Tack-welded

Platinum-platinum 10% rhodium thermocouples thermocouples

were used to measure 5 sample backface temper- #1 36 ga

atures and 12 in-depth insulator temperatures MDRL 0.125 #2 28 ga
continuously throughout each test cycle. Initially, spring loaded #6 #3 28 ga
spring-loaded backface thermocouples were used

MDRLO.0625 #4 28gafor ease of sample removal. However, it was MDRL 0.0625 #7 #4 28
necessary to heat the sample 4 or 5 min before spring loaded #5 36 ga

even fair agreement could be reached with the BLH #8
pyrometer measurements. The slow response of SLPR10-WS-125

these thermocouples compared with the pyro-
meter led to an investigation of their accuracy.
It was suspected that contact thermal resistance 0 1
and thermocouple sheath conduction were causing Scale- inches
these errors.

As a result, an experiment was conducted to Fig. 17 Thermocouple locations on strip sample
compare the outputs of various spring-loaded and GP73-0587-17

tack-welded thermocouple configurations at thermocouples were 28 gauge. The strip was
conditions corresponding to actual sample tests. electrically heated in a vacuum chamber as shown
Included in the group of spring-loaded thermo- in Figs. 18 and 19 at a pressure of 10 Torr (1.33 x
couples were the BLH Model SLPR 10-WS-125 103 N/m 2 ). Eleven temperature levels from 240
(originally planned for use on this program), an to 1620 0 F (388 to 1156 K) were recorded in the
Aerotherm probe, and three MDRL designed initial test. Four tack-welded thermocouples and
probes. All thermocouples were Pt-Pt 10% Rh the MDRL 0. 125 spring-loaded probe were
except the Aerotherm probe which was Pt-Pt 13% monitored on a Biddle-Gray 0-80.5 mV potentio-
Rh. Five Pt-Pt 10% Rh thermocouples were tack- meter. The BLH and MDRL 0.063 probes and the
welded to a 0.010 in. (0.025 cm) thick, 0.25 in. #5 tack-welded thermocouple were recorded on
(0.64 cm) wide, and 6.5 in. (16.5 cm) long, Honeywell Electronik 19 pen recorders. At the
TD-NiCr metallic strip as shown in Fig. 17. The peak temperature, the BLH probe tip failed by
outer thermocouples were 36 gauge and the inner bending.
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Additional tests were made with the output of
the #3 tack-welded thermocouple on the pen
recorder since it straddled the MDRL 0.063
spring-loaded probe. The strip sample temperature
level as measured by the #2 tack-welded thermo-
couple was raised to 2200 0 F (1478 K) in five steps.

Other tests were made to compare the Aero-
therm probe and a sharp pointed MDRL 0.063 SP

spring-loaded probe (Fig. 20) with the tack-
welded thermocouple outputs. An aluminum oxide
sleeve was placed on one of the tack-welded
thermocouples such that the sleeve was adjacent
to the strip sample to determine conduction
effects. During these tests the sleeve was also
moved back approximately 0. 125 in. (0.318 cm)
from the sample for some of the test points.

Figure 21 compares all of the tack-welded
Fig. 18 Heated TD-NiCr strip sample for

thermocouple outputs with the #2 thermocouplethermocouple calibration measurements

Fig. 19 Heated TD-NiCr strip sample for thermocouple calibration measurements
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output. Differences of 60 0 F (33 K) were credited
to the presence of local cold spots on those tack-
welded thermocouples that straddled the spring-
loaded ones.

Figure 22 compares all the spring-loaded probe
outputs with the #2 tack-welded thermocouple
output. The probe outputs are significantly lower
at all temperature levels. Better agreement is
achieved with the smaller probes, but differences
of 300 0 F (167 K) existed at the temperature
levels of interest, 1800 to 2200 0 F (1256 to
1476 K). It was concluded that conduction
through the probes caused the error.

Cold spots were noted on the sample face
opposite the point of contact with the probes
(note mirror image in Fig. 23), but none were

Views rotated 90 deg apart noted with the tack-welded thermocouples.

Fig. 20 Photomicrograph (24X) of MDRL 0.063 Significant errors were found in both the

SP spring-loaded thermocouple probe Aerotherm and the MDRL 0.063 SP probes. At
the 1450 0 F (1061 K) level the Aerotherm probe

L Aerotherm
0 BLH SLPR 10-WS-125

2500 0 MDRL 0.063
LL Thermocouple 2500 a MDRL 0.125

no. MDRL SP 0.063
1 T.W. w/ceramic shield

2000 3 2000 - O T.W. w/ceramic back 0.125 in.
0 0 4O 5

0 0 

1500 /oo

0.
01000

0 1000

500

0 500 1000 1500 2000 2500 0
0 500 1000 1500 2000 2500Thermocouple no. 2 output (OF)hermocouple no. 2 output (OF)

Thermocouple no. 2 output (oF)

Fig. 21 Comparison of tack-welded thermocouple Fig. 22 Comparisons of spring-loaded and
outputs tack-welded thermocouple outputs

GP73-0587-21 GP73-0587-22
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using this small [0.005 in. (0.0127 cm) diami
wire. The use of 28 gauge Pt-Pt 10% Rh standard

grade thermocouple wire was then adopted since

the series of experiments showed no appreciable

difference in temperature measurement between

28 and 36 gauge tack-welded thermocouples
(Fig. 21).

Various techniques were investigated for routing

the tack-welded thermocouple wires from the test

samples through the Silfrax back-up insulation. It

was concluded that the best technique was to tack

the individual wires in close proximity to each

other, route them between the sample backface
and Silfrax for approximately 0.25 in. (0.635 cm)
in opposite directions, and then pass them through
individual holes in the Silfrax that were drilled

perpendicular to the sample.

The sample backface temperature histories at
five locations are presented in Figs. A-12 through

A-92 in Appendix B, Volume II of this report for

each of the samples tested. Histories for cycles
near 25, 50, 75, and 100 are presented for those
samples cycled 100 times and near 15, 30, and 50

Fig. 23 Mirror view of heated TD-NiCr strip for those cycled only 50 times. Within 30 sec the

sample samples reached essentially an equilibrium
temperature.

differed by more than 2000 F (111 K); the probe
Also shown in Appendix B are the in-depth

opened at the thermocouple bead before higher
insulator temperature histories as measured by

temperatures could be reached. At the 1800 0 F
thermocouples 0.375 in. (0.952 cm), 0.750 in.

(1256 K) level the MDRL 0.063 SP probe (Fig. 20) (1.905 cm), and 1.125 in. (2.857 cm) away from
(1.905 cm), and 1.125 in. (2.857 cm) away from

was approximately 2500F (139 K) low.
the sample. The temperature histories of the

Figure 22 shows the #2 tack-welded thermo- sample and insulator during all cycles were re-

couple output exceeded the sleeved couple by corded on magnetic tape.
1600 F (89 K) at the 18250 F (1269 K) level. Typical temperature histories as measured by
Moving the ceramic sleeve 0.125 in. (0.318 cm) the in-depth thermocouples and by both spring-
from the sample reduced the difference to only loaded and tack-welded thermocouples on the
250F (14 K). sample backface are shown in Figs. 24 and 25 for

It was concluded from these tests that tack- the DS-3 sample. The slow response of the spring-
welded thermocouples should be used to measure loaded thermocouples can be seen by comparing
the sample temperatures for all the metallic speci- these two figures. This led to the thermocouple
men tests. Attempts were made initially to use investigation described above and to the subse-

36 gauge thermocouple wire. However, the quent change to rapid response tack-welded
thermocouple-sample junctions were too weak thermocouples on the sample backface.
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2400

Pyrometer
measurements

2200asurements Thermocouples

Sy- -- In-depth distance

bol Spring- from sample (in.)
bol loaded

3/8 3/4 1-1/8

2000 1 6 7 8

0 2 9 10 11

S0 3 12 13 14

V 4 15 16 17

1800 X 5

1615 17

1600 0 01

S- 14. .6

13 .7

12* *8

1400 30 02

0 11 10

LL

S1200

E

1000 -xx

% x

800

600 t too,

a ll t l i Il

446a, VOID

400 #,,

200 q ,

0 200 400 600 800 1000 1200

Time (sec)

Fig. 24 Typical temperature histories for DS-3 sample (cycle 27) GP730587-24
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2400

2200 - Thermocouples

Sym- Tack In-depth distance

Pyrometer bol Welded from sample (in.)
measurements 3/8 3/4 1-1/8

2000
&1 Ow 0 2 9 10 11

(6' . 'C& + 3 12 13 14

Sf7 4 15 16 17

10 X 5
1800

15 16 17

1600 40 01
14. .6

5

13 * 7

12* *8

1400 - 30 02

11 " 9
\ /0

S1200

1000

200

v 
oIsla

800 - a6

600 ' 0
#9

400 , I i 1'

200 0".U..,,.,+u...

V 1-i6 V'YWvqwqw q Ir ,V ITvvvwvTvYw

0 I I 1 I
0 200 400 600 800 1000 1200

Time (sec)

Fig. 25 Typical temperature histories for DS-3 sample (cycle 50) GP73-05-25
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6.2 Optical temperature 100 Strip sample TD-NiCr

measurements O 1900oF
S", A 2000F

l 50 - 22000F

6.2.1 Pyrometer a * TD-9 sample at 20000F
E corrected for window

Figures 24 and 25 in this volume and Figs. A-12 Cu transmittance
a)

through A-92 in Volume II show the pyrometer- 0Emissometer
MO measuredmeasured temperature levels at five surface emittance asured

emittance at
positions on the sample. These levels are indicated I 2000oF

-50by the dashed lines with the symbols corresponding 0 0.2 0.4 0.6 0.8 1.0 1.2
to the location of the backface thermocouples. Emittance control setting
The levels shown are an average of the two scans
at each location and have been corrected for Fig. 26 Emittance control effects

GP73-0587-26
sample emittance and window transmittance.
Good agreement was achieved between the pyro- setting corrected for window transmission. Also
meter and backface thermocouple measurements

shown in Fig. 26 are data taken from a stripfor most samples. Periodic discrepancies were
sample in a bench test at temperatures from 1900

attributed to local surface emittance changes that to 22000 F(1311 to 1478 K). These data show
were visually detected during tests. However, in the sensitivity of the instrument to the emittance
Fig. 24 all the pyrometer measurements are con-

control setting and indicate good agreement be-
siderably higher than the thermocouple data

tween the emissometer measured emittance of
which were obtained using spring-loaded thermo- 0.71 for TD-NiCr at 2000 0 F (1367 K) and the
couples. This gives further substantiation to the

emittance control setting required for zero devi-
fact that the spring-loaded thermocouple measure-

ation between the pyrometer and correspondingments were in error.
backface thermocouple measurements.

Experiments were conducted to determine the
Tests were made over a range of temperatures

effect of emittance control setting and window
from 1900 to 24000F (1311 to 1589 K) using atransmittance on the pyrometer-observed temper- DS-NiCr strip sample 0.25 in. (0.635 cm) wide,

ature measurements. Tests were made both during 0.010 in. (0.0254 cm) thick, and 6.5 in. (16.5 cm)
actual program cycles of the metallic samples and

long in a bench experiment. The pyrometer was
in a bench set-up using strip metallic samples. aligned through the same window used in the

During cycle 16 on metallic sample TD-9, the program tests. The pyrometer lens was 31 in.
emittance control setting was varied from 0.1 to (78.7 cm) from the window and 43 in. (109 cm)
0.9 and the pyrometer output was recorded. The from the strip sample. Tests were also made with-
indicated surface temperature decreased with an out the window to determine an effective
increase in emittance setting as expected. The transmittance.
indicated temperature (nominally 2000 0 F or

The strip sample temperature was measured1367 K) decreased 120 0 F (67 K) as the emittance
using a Pt-Pt 10% Rh thermocouple tack-weldedsetting was increased from 0.5 to 0.9. All of the
to the backside. The sample temperature was

metallic samples tested had emittances in this range. increased in increments of 100 0 F (55.6 K) starting

The difference between the pyrometer and at 1900 0 F (1311 K). The emittance control setting
thermocouple measured temperature is shown in was varied in increments of 0.05 over a range that
Fig. 26 as a function of the emittance control encompassed agreement between the thermo-
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couple and pyrometer measurements. Thus, the 1.0

effective emittance was determined at each temper- U

ature level. This same technique was also used M 0.8 Thermodot TD-9

without the quartz window, and the combined E characteristic
c wavelength

data yielded the effective window transmittance. E 0.6

Figure 27 illustrates the effective window trans-
0 Fused quartz window

mittance derived from these measurements. The a 0.4 0 (G.E. 125)

scatter in the data is attributed to the low sensi- i Measuredwith a

tivity of indicated temperature with the emittance E 0.2 Beckman DK-2A
o spectrophotometer

control setting. For example, with a sample z

temperature of 2000 0 F (1367 K) the indicated 0
0 0.5 1.0 1.5 2.0 2.5 3.0

temperature varied only 53 0 F (29.4 K) as the 0 0.5 1.0 1.5 2.0 2.5 3.0

emittance control setting was varied from 0.47

to 0.66. Removing the window did not change Fig. 28 Pyrometer window transmittance
GP73-0587-27

the sensitivity appreciably.

The normal transmittance of the window was

determined over a range of wavelengths using a For an emittance setting of 0.72 (emissometer

spectrophotometer. These data are shown in Fig. measured emittance), Fig. 29 shows that the

28. At the pyrometer characteristic wavelength viewing angle selection of 21 deg (0.37 rad) used

(X = 0.8 pm) the window transmittance was 0.87. for this program provided good agreement between

This value is shown in Fig. 27 for comparative the pyrometer reading and the sample thermo-
purposes. couple output for the full range of temperatures.

Increasing the viewing angle resulted in a larger
The effect of pyrometer viewing angle was also temperature deviation. The maximum deviation

investigated in this program. Tests were made over measured was 112 0 F (62 K) at a sample temper-
a range of temperatures from 1845 to 2228 0 F ature of 1900 0 F (1311 K) and a viewing angle of
(1281 to 1493 K) using a TD-NiCr strip sample 60 deg.
0.50 in. (1.27 cm) wide, 0.010 in. (0.0254 cm)

thick, and 6.5 in. (16.5 cm) long in a bench experi- Lambert's cosine law states that the intensity

ment. No window was used. The pyrometer viewing of a plane source of radiation varies as the cosine

angle was varied from 15 to 90 deg (0.26 to of the angle of emission. Since the apparent visible

1.57 rad). brightness of a radiating surface depends on the

radiant energy flux from that surface, the cosine

S1.0 _law states that a blackbody has the same apparent

brightness regardless of the angle from which it
E 0 --- is viewed.

C 0.8 - - - - Normal as measured by
spectrophotometer Real surfaces vary from this law depending

SExperimental pyrometer data upon the material. For most metals, as the angle

0.6 - Viewing angle 20 deg between the direction of emission from a surface
a DS-NiCr strip sample

SViewing distance 43 in. element and the normal to the surface (opposite

S I I I I of viewing angle) is increased, the emittance first
, 0 1800 1900 2000 2100 2200 2300 increases and then decreases rapidly to zero at

Sample temperature (OF) angles near parallel to the sample5 . This trend is

Fig. 27 Pyrometer window transmittance evident in Fig. 29.
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150 high temperature emissometer and the strip sample
attachment described in Section 3.5.5.

Unoxidized samples 0.25 x 8.0 x 0.010 in.
(0.64 x 20.3 x 0.0254 cm) of each material were
repeatedly cycled from room temperature to

100 - typical test temperatures with the static air at a
pressure of 10 Torr (1.3 x 103 N/m 2 ). Each heat
cycle continued for approximately 10 min. A

o chromel-alumel thermocouple, spot-welded 0.5 in.
(1.26 cm) below the sample center was used for
sensing the strip temperatures. The sample emit-

50-
E tance increased as the surface oxidized, and several

heating and cooling cycles were conducted before
a stable oxide layer developed.

0

0 Figure 30 illustrates the variation of total
, * normal emittance of a TD-NiCr and DS-NiCr strip

0 - sample with time when at a temperature of 2000 0 F
.= * (1367 K). This behavior was characteristic of all
E the alloys tested. Each point shown is an average
Sof three measurements.

C1 Table 4 lists the final emittance values for theE

S-50 metallic samples at the various test temperatures.
SThe product of the steady-state total normal

E emittance and the transmittance of the pyrometer
observation port (G.E. 125 fuzed quartz) was
used to establish the pyrometer emittance control

setting.

I Pyrometer emittance setting = 0.72

I O 19000F

0 20000F 0.8

A 22000F

C

SII . 0.7
-150 E

0 20 40 60 80 100

Angle (deg) E

c 0.6 O DS-NiCr

Fig. 29 Temperature deviation as a function of O TD-NiCr
viewing angle -

GP73-0587-28 0.5

0 40 80 120 160 200

6.2.2 Model emittance Accumulated time at 20000 F (min)

Total normal emittance measurements of all alloys Fig. 30 Emittance history of TD-NiCr and DS-NiCr
tested for this program were made using the MDC GP73-0587-29
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Table 4 Total normal emittance measurements

Final No. of Sample
Material emittance cycles temperature

TD-NiCr* 0.71 14 2000 0 F

TD-NiCr 0.70 11 22000 F

DS-NiCr 0.72 16 20000 F

TD-NiCrAI 0.49 15 2200 0 F

TD-NiCrAIY 0.50 15 2200 0 F

HS-188 0.75 20 1800 0 F

HS-188 0.77 9 2000 0 F

Hastelloy X 0.74 15 18000 F

*Emittance measurement not made at 18000 F but assumed to
be the same as at 20000F.

GP73-0587-46

6.2.3 IR thermograms Fig. 32 Typical color thermogram

At approximately the mid-point of each sample A post-test calibration was performed to es-
test cycle, a thermogram was obtained showing tablish curves from which the surface temperature
at least five isotherms on the sample surface. could be obtained without determining the
During the test cycles on all samples up to cycle absolute effects of background radiation from
33 on HS-1 and HS-2, the thermograms were the bow shock and arc radiance. The results of
recorded using black and white Polaroid photo- this calibration are shown in Fig. 33 for the two
graphs. To provide more meaningful data, espe- lens settings used during this test program. The
cially at the lower test temperatures, the thermo- figure can be utilized in the following manner:

grams on subsequent tests were recorded using a
35 mm camera and color filter wheel which pro- 2400
vided each isotherm with a characteristic color.

Typical thermograms resulting from each technique 2300 -
pre shown in Figs. 31 and 32.

2200

U-
o 2100

2000

E 1900

1800
0 f 7.2 G.E. fused quartz type 125

1700 L f 14 CaF 2

1600
0 20 40 60 80

Isotherm units

Fig. 31 Typical black and white thermogram Fig. 33 AGA thermovision system in situ calibration
GP73-0587-31
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1. Choose an isotherm (preferably the one at Figure 34 illustrates the thermal model used in
the model center) on a 35 mm color thermo- the calculations. The thermal properties used were
gram or black and white Polaroid that coin- those of a TD-NiCr metal sample backed by a 1.5
cides with the location of a tack-welded in. (3.8 cm) thick Silfrax insulator. The model was
thermocouple. separated from the holder on the sides by 0.062 in.

2. Determine the isotherm temperature as (0.157 cm) of Fiberfrax insulation. The water-

measured by the corresponding tack-welded cooled housing was assumed to have a 1000 F

thermocouple. (311 K) average wall temperature. Since the model
has four identical quadrants, only one was analyzed.

3. Determine the isotherm unit value on Fig. 33
corresponding to this temperature using the The general heat transfer program "HEATRAN" 4

cappropriate curve was used for these calculations. The thermal ana-
lyzer subprogram used was provided with sub-

4. Choose any other isotherm location and its routines for heat transfer calculations by the
corresponding setting at the bottom scale of following modes:
the thermogram. The difference between this
setting and the setting for the previous iso-

All dimensions in inches
therm multiplied by the sensitivity (shown

o Thermal nodes
on the thermogram) equals the Ai o to be

@ Approximate thermocouple locationsubtracted from or added to the previously
determined isotherm unit value.

q - 0 2.0 - 0.0625
5. With the new value of isotherm units, proceed - 0

vertically to the appropriate curve, and read 2.75 r
the new temperature on the ordinate of
Fig. 33.

1.414 r Fiberfrax
Several checks were made by comparing temper- 2.0 insulation

atures determined from these curves with tempera- o o o

tures measured by the tack-welded thermocouples Sample quadrant
on various test models. The agreement was within q = 000 sink-
+1% when choosing isotherms within a 1.5 in. o o o 450 model

(3.81 cm) radius from the model center. holder

-- 0.64
Radiation

0.10 Convection Metal sample
6.3 Thermal analysis -.

0.375
A thermal analysis was made of a metallic sample 0 0 @ o

mounted in the water-cooled holder to predict: 0.375 Silfrax insulation
1. 0 0 0 0

* surface temperature distribution and history, 0.375
* in-depth back-up insulation temperature 0. 0 0O

distribution and history, 0.8 0 0 0 0

* effects of cycling on the temperature distri- 00 -

bution, and GP73-0587-32

* model holder sink effects. Fig. 34 Thermal model of sample
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I) heat storage, shown in Fig. 36. Higher in-depth insulator

2) conduction, temperatures were achieved on each consecutive

3) radiation, cycle after a cold start, but they never achieved

4) heat addition or generation, steady-state during any heat pulse.

5) heat flux solution (inverse problem), and With a negligible heat loss through the back-up
6) convection and aerodynamic heating. insulator, a good correlation was found to exist

Modes 1, 2, 3, and 6 were used in this analysis. between the measured sample emittance and the

Two-dimensional transient heat transfer was con- incident heat flux required to obtain the same test

sidered and the nodes were modeled in rectangular temperature for different metallic materials. For

coordinates. The program output was the temper- instance, comparing the TD-NiCrAlY and TD-NiCr

ature history at each specified node. A total of 258 samples tested at 2200 0 F (1478 K), the ratio of

nodes were used to completely define the model measured emittance was 0.50/0.70 = 0.72 while

and insulator temperature history. Nodal planes the ratio of measured average heat flux values

were placed at the sample surface, sample back- was 21.4/28.4 = 0.75.

face, on the model holder, and in the insulation as The sample surface temperature distributions

shownThe 
sample surface temperature distributions

shown in Fig. 34. varied from one sample to another. The sample

Figure 35 compares measured temperature shape had a strong effect. As the model surface

histories of sample TD-7 during cycle 50 with flexed, the sample temperature fluctuated ac-

those predicted by the thermal analysis. The mid- cordingly. In general, the sample temperatures

side and mid-corner predictions are both on the were uniform within +5%.

same radius, but the mid-side point is closer to The sample minimum cool-down temperature
the cold holder wall and thus is at a lower temper- varied somewhat with the test temperature. Table 5
ature. The predicted in-depth temperatures are lists the range of cool-down temperatures for the
generally higher than the measured values. This three test temperature levels.
could have been caused partially by a temperature

difference between the sample and the front sur- Table 5 Sample cool-down temperatures
face of the Silfrax insulator. Buckling of the

sample would create an insulating air gap between Maximum sample 10 Min cool-down
the two. Radiation calculations assuming infinite temperature temperature
parallel planes indicate a 500 F ( 28 K) temperature
difference would be sufficient to transfer 4% of 18000F 280-420 0 F
the sample heat flux.

20000 F 270-4500 F
Another plausible explanation of the deviation

could be the assumed Silfrax thermal conductivity. 22000 F 380-5500 F

A value of 8.34 x 10- 2 Btu/hr/ft/oR (0.144 GP73-0587-166

W/m K) was used for these calculations.

Using the measured insulation in-depth temper- 6.4 Physical measurements
atures and the above thermal conductivity value,
it was determined that a maximum of 4% of the
incident heat flux was conducted through the Weight and thickness changes as a function of
insulation. A steady-state condition in the insu- cycle number are shown for some samples in
lation was not reached in a 10 min heat pulse as
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2400

2200 Thermocouples

I Sym- Tack In-depth distance

bol from sample (in.)
Welded

3/8 3/4 1-1/8

2000 g 1 - 7 8

0 2 - 10 11

S - 12 13 14

V 4 15 - 17

1800 X 5 - - -

15 16 17

1600 40 01

14. 5 6

13- * .7

12* .8

1400 30 0 2

11' * 9
10

1200 - Predicted mid-corner
1200

ECL: Predicted mid-side

1000 TV

800 - v

400 0

0 200 400 600 800 1000 1200

Time (sec)

Fig. 35 Typical temperature histories for TD-7 sample (cycle 50) GP73-0e8-33
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2400 Figs. 37 through 44. These physical measurements
O Sample TD-7 are also shown for each sample tested in Figs. A-93

Cycle 50
Sample T/C3 Time = 10 min through A-1 13 in Appendix C of Volume II of

S Steady-state, this report.
2000 one-dimensional

distribution The marked change in the rate of weight loss

\ and thickness increase shown in Figs. 37 and 38

Predicted mid-side at for samples DS-3 and DS-4 occurred when the
r = 1.414 in.

1600 -\ Time = 10 min transition from spring-loaded to tack-welded

thermocouples was made. As discussed in Section

o \ Predicted mid-corner at 6.1, it is probable that the sample temperature
R414 

OT/C 12 r= 1.414 in. was considerably higher [> 100 0 F (56 K)] than
TIC 12 Time 

= 10 min1200 - that indicated by the spring-loaded thermocouples

E ,when they were in use. Thus, a higher rate of

\ \. weight and thickness change would be expected.

800 - \ Although a thickness increase occurred during

testing of the Hastelloy X samples (Figs. 39 and

T/C 13 0 40) this material displayed the greatest weight

400 \ loss while being subjected to the lowest tempera-
400 -\ ture environment. The TD-NiCrAl (Figs. 41 and

T/C 14 0 42) and TD-NiCrAlY (Figs. 43 and 44) materials
showed the least change in weight, thickness,

0 I and physical appearance even though they were
0 0.5 1.0 1.5 subjected to the highest temperature environment.

Distance from sample (in.)

Fig. 36 Back-up insulator temperature distribution
GP73-0587-34
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Sample DS-3 Sample DS-4
Temperature 20000 F Temperature 20000 F

O Cumulative change O Cumulative change

o Total net change O Total net change

(100 cycles) (100 cycles)

0.019 0.019

- 0.018 - - 0.018 -

0.017 - 0.017

5 0.016 - o 0.016 -
. Sanding of sample u
r 0.015 - prior to attaching 5 0.015 - Sanding of sample

W tack-welded prior to attachingtced tack-welded
S0.014 thermocouples 0.014thermocouples

0.013 - 0.013

E 0.012( E 0.012

0.011 0.011
II I_ _ _ II__

0.60 0.60

0.40 - Spring-load Tack-weld 0.40 - Spring-load Tack-weld
T/C's T/C's T/C's T/C's

0.20 - 0.20 -

E E& -0.20 - -0.20 -

0 25 50 75 -0.40 -0.4025 50 75 100

' -0.60 - 'a -0.60
E E
~ -0.80 cf -0.80

-1.00 F -1.00 F
0 25 50 75 100 0 25 50 75 100

Heating cycles (10 min each) Heating cycles (10 min each)

Fig. 37 Sample weight and average thickness Fig. 38 Sample weight and average thickness
change change

GP73-0587-35
GP73-0587-36
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Sample X-1 Sample X-2

Temperature 1800 0 F Temperature 18000 F

O Cumulative change 0 Cumulative change

0 Total net change 0 Total net change
(100 cycles) (100 cycles)

0.019 0.019

0.018 0.018

0.016 - 0.016

S 0.015- 0.015

2 0.014 - 0.014

M 0.013 - 0.013

E 0.012 - E 0.012

0.011 - 0.011 -

0.60 0.60

0.40 - 0.40

0.20 - 0.20
C C

. -0.20 - -0.20

" -0.40 - -0.40

- -0.60 - "a -0.60
E E
2 -0.80 - ] -0.80

-1.00oo I I -1.0oo I I
0 25 50 75 100 0 25 50 75 100

Heating cycles (10 min each) Heating cycles (10 min each)

Fig. 39 Sample weight and average thickness Fig. 40 Sample weight and average thickness
change change

GP73-0587-37 GP73-0587-38
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Sample TAL-1 Sample TAL-2
Temperature 22000 F Temperature 22000 F

O Cumulative change O Cumulative change

o Total net change [ Total net change
(100 cycles) (100 cycles)

0.019 0.019

7 0.018 - - 0.018 -

0.017 - 0.017 -

- 0.016 - 0.016 -

'5 0.015 5 0.015

M 0.014 c c0.014

S0.013- 0.013

E 0.012 - E 0.012

0.011 F 0.011
IllIl

0.60 0.60

0.40 - 0.40 -

0.20 - 0.20 -

o 0 0

. -0.20 - . -0.20 -

S-0.40 - -0.40 -

'a -0.60 - - -0.60 -
E E
5 -0.80 - 5 -0.80

-1.00 I I I -1.00o I I
0 25 50 75 100 0 25 50 75 100

Heating cycles (10 min each) Heating cycles (10 min each)

Fig. 41 Sample weight and average thickness Fig. 42 Sample weight and average thickness
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RESULTS

Sample TY-2 Sample TY-1
Temperature 22000 F Temperature 2200 0 F

O Cumulative change 0 Cumulative change

o Total net change 0 Total net change
(100 cycles) (100 cycles)
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C S
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Fig. 44 Sample weight and average thickness Fig. 43 Sample weight and average thickness
change change

GP73-0587-42 GP73-0587-41
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7 Concluding remarks

Metallic materials were evaluated for the space within 5% of the tack-welded thermocouple

shuttle thermal protection system (TPS) by cyclical measurements. A scanning infrared imaging

testing of samples (up to 100 times each for 10 system was used to measure the sample front

min each test cycle) in a hypervelocity oxidizing, face temperature distribution. This was the

atmosphere. A total of 325 sample test hours were first time this system had been used in this

conducted in an arc heater facility on 21 metallic application. The distribution of surface

samples fabricated from five nickel base alloys temperature as determined by this system

and one cobalt base alloy. The tests were con- was essentially uniform (±5%) and in

ducted at temperatures from 1800 to 2200oF equilibrium over nearly the entire 10 min

(1256 to 1478 K) at a nominal impact pressure heat pulse.

of 6 Torr (800 N/m 2 ) and an arc heater average 4. Insulation heat transfer never reached the
exit enthalpy of 4000 Btu/lb (9.3 x 106 J/kg) steady state, one-dimensional mode during
with no sample failures. the 10 min heat cycles. Measurements from

Some conclusions drawn from this test pro- the imbedded thermocouples in the Silfrax

gram include: back-up insulator indicated that the maximum
heat loss through the insulator was 4% of

1. It was possible to obtain 70% of the physical

nozzle exit area as a test stream with a

measured heat flux uniformity within +10% the sample after a 10 mi cool down was

and pressure within +5% at Mach 4.6. approximately 400°F (477 K).
5. A good correlation was found to exist be-

2. Direct contact surface temperature measure-
tween the measured sample emittance and

ments indicated significant response and
the incident heat flux required to obtain the

magnitude differences between tack-welded same test temperature for different metallicsame test temperature for different metallic
and spring-loaded thermocouples with the

materials. Comparing the TD-NiCrAIY and
tack-welded thermocouples being more TD-NiCr samples tested at 2200 0 F (1478 K),
accurate. Errors of several hundred degrees the ratio of measured emittances was 0.50/
were found in various spring-loaded thermo- 0.70 = 0.72 while the ratio of measured
couple designs. The response of the tack-

average heat flux values was 21.4/28.4 = 0.75.
welded thermocouples was much faster than

the spring-loaded thermocouples and agreed 6. Although a thickness increase occurred during

well with the pyrometer response. testing of the Hastelloy X samples, this
material displayed the greatest weight loss

3. Optical temperature measurements made
while being subjected to the lowest temper-

using a pyrometer showed nominal agreement
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CONCLUDING REMARKS

ature environment. The TD-NiCrAl and even though they were subjected to the

TD-NiCrAlY materials showed the least change highest temperature environment.

in weight, thickness, and physical appearance

44 WMCDONAELL DOUGLAS Report MDC 00473 *June 1972
Volume



8 Symbols

c - Constant Rmax - Maximum model radius

dex - Nozzle exit diameter s - Surface distance along nozzle wall

dm - Model diameter t - Thickness of sample

E - Arc voltage V - Free stream gas velocity

hex - Gas enthalpy at nozzle exit W - Metallic model edge width

I - Arc current x - Axial distance from nozzle exit

Ai o  - Object isotherm difference 6 - Boundary layer thickness

ml - Primary air flow rate X - Wavelength

rn 2  - Secondary air flow rate p - Density

M - Mach number A - Viscosity

PT' - Model surface pressure Subscripts

4 - Heat flux to surface r - Evaluated at Eckert's reference

R, - Core radius at nozzle exit temperature

Rb - Model bend radius av - Average value

Rex - Nozzle exit radius CL  - Centerline value
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